Number Base Converter

Convert between decimal, binary, hexadecimal, octal and other number systems with step-by-step solutions.

Valid digits: 0123456789
255 (Base 10) = 11111111 (Base 2)
Step-by-Step Solution
1Convert Decimal to Binary:

Repeatedly divide by 2 and collect remainders (read bottom to top):

StepDividend÷ 2QuotientRemainderDigit
1255÷ 212711
2127÷ 26311
363÷ 23111
431÷ 21511
515÷ 2711
67÷ 2311
73÷ 2111
81÷ 2011
Reading remainders bottom to top: 11111111
2Result:
255 (Base 10) = 11111111 (Base 2)

255 (Base 10) in All Bases

Number SystemBaseValue
Binary211111111
Octal8377
Hexadecimal16FF
Ternary3100110
Quaternary43333
Quinary52010
Senary61103
Septenary7513
Duodecimal12193
Vigesimal20CF
Duotrigesimal327V
Hexatrigesimal3673

Common Values in Different Bases

DecimalDecimalBinary
000
111
2210
3311
44100
55101
66110
77111
881000
991001
10101010
15151111
161610000
202010100
3232100000

Number System Reference

NameBaseDigitsDescription
Binary201Used in computers and digital systems
Octal801234567Used in Unix file permissions
Decimal100123456789Standard number system
Hexadecimal160123456789ABCDEFUsed in programming and colors
Ternary3012Three-valued logic
Quaternary40123Used in DNA encoding
Quinary501234Based on counting fingers on one hand
Senary6012345Highest 1-digit prime base
Septenary70123456Days of the week
Duodecimal120123456789ABDozen system, highly divisible
Vigesimal200123456789ABCDEFGHIJMaya numeral system
Duotrigesimal320123456789ABCDEFGHIJKLMNOPQRSTUVUsed in encoding schemes
Hexatrigesimal360123456789ABCDEFGHIJKLMNOPQRSTUVWXYZUses all alphanumeric characters

Popular Conversions

How Number Base Conversion Works

A number base (or radix) determines how many unique digits are used to represent numbers. The decimal system uses 10 digits (0-9), binary uses 2 (0-1), and hexadecimal uses 16 (0-9, A-F).

Converting to Decimal

Each digit is multiplied by the base raised to its position power. For example, binary 1011 = 1×2³ + 0×2² + 1×2¹ + 1×2⁰ = 8 + 0 + 2 + 1 = 11 in decimal.

Converting from Decimal

Repeatedly divide by the target base and collect remainders. Read the remainders from bottom to top to get the result. For example, 11 ÷ 2 gives remainders 1,1,0,1 → 1011 in binary.

Common Number Systems

  • Binary (Base 2) - Used in computers; only 0s and 1s
  • Octal (Base 8) - Used in Unix file permissions
  • Decimal (Base 10) - Standard human counting system
  • Hexadecimal (Base 16) - Used in programming, colors (e.g., #FF5733)
  • Duodecimal (Base 12) - Historical system, highly divisible